FUEL SAVING TECHNOLOGY

2015.11 TECHNICAL DEVELOPMENT TEAM

TABLE OF CONTENTS

FUEL SAVING TECHNOLOGY

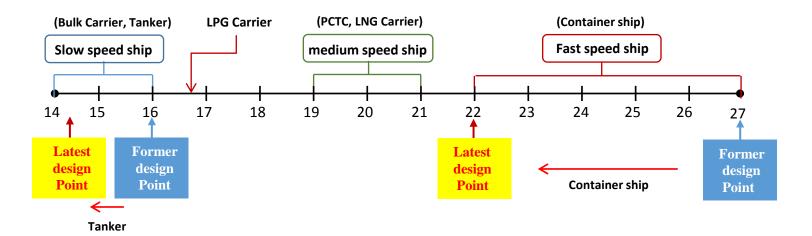
Slow steaming / Dimension Optimization / Hull form Optimization / Engine & Propeller Improvement / Energy saving Device

WHAT IS NEXT?

Main dimension optimization / Alternative Energy / Minimum Ballast / Improving ship performance in Waves

FUEL SAVING TECHNOLOGY

SLOW STEAING



Fuel consumption = f (speed)³

- ✓ Fast ship large speed drop
- Slow speed and Medium speed ship small speed drop
- ✓ LPG Carrier No change

DIMENSION OPTIMIZATION

WIDE BEAM SHIP – LR1 Tanker

Particulars	Conventional 2013 (A)	Wide beam LR1 (B)
LBP [m]	219	219
B [m]	32.24	40.0
D [m]	20.65	19.0
Td / Ts [m]	12.2 / 14.3	12.2 / 12.8
L/B [-]	6.79	5.48
Deadweight [mt]	73,400	74,000
Cargo hold volume [m ³]	83,650 (100.0)	87,600 (104.7)
Payload (at river draft) [mt]	45,524 (100.0)	52,540 (115.4)
Main Engine type	6S60ME	6S60ME
DMCR [kW X rpm]	9,660 X 89.0	9,660 X 89.0
Service speed [knot]	14.5	14.0
75% MCR speed [knot]	14.2	14.4

DIMENSION OPTIMIZATION

KR CONFIDENTIAL

WIDE BEAM SHIP – LR1 Tanker

\bigcirc In Comparison with Conventional 2013(A)

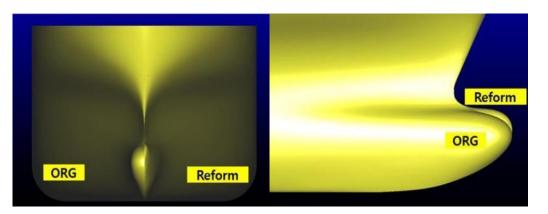
- ✓ increased cargo hold volume: 3,950m3 (4.7% up)
- ✓ improved Payload (at river draft) : 7016 Ton (15.4% up)
- ✓ Less Annual FO Cost : 0.14 Million USD (abt. 4.5% down)

Items	Conventional 2013 (A)			Wide beam LR1 (B)		
Condition	Ballast	Design	Scantling	Ballast	Design	Scantling
Speed [knots]	12.5	12	12	12.5	12	12
DFOC [ton/day]	18.0	18.0	20.4	17.5	17.1	19.4
*Operating Profile [%]	20	40	40	20	40	40
	1,009	2,020	2,281	982	1,919	2,168
FOC [ton/year]	5,310		5,068			
**Annual FO Cost	abt. \$3,080,000 (100.0)			abt. S	\$2,940,000 (95.5)

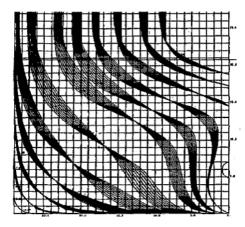
DIMENSION OPTIMIZATION

WIDE BEAM SHIP – 7,300 Unit PCTC

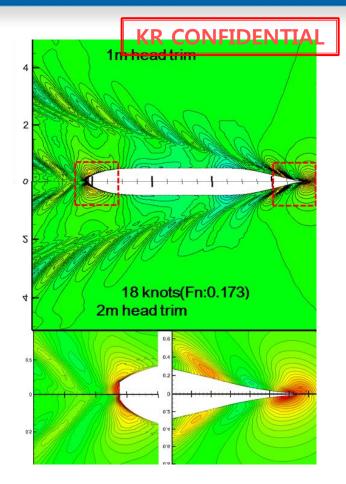
KR CONFIDENTIAL


Particulars	7,300 UNIT	7,400 UNIT (Wide beam)	Change, Improvement	
Loa [m]	200.0	200.0		
B [m]	35.4	38.0	+2.6m	
Td / Ts [m]	9.0 / 10.0	8.7 / 9.7	• WIDE BEAN	1
Deadweight (Td / Ts) [mt]	14,600 / 20,050	11,300 / 17,200	-22.6% / -14.2%	
CAR capacity [Unit]	7,280	7,400	+1.6%	
BALLAST WATER at RT43 Loading [MT]	3,600	Not required	-100.0%	
Main Engine type	7S60ME-C8	7S60ME-C8	MINIMUM BALLAST W	ATER
DMCR [kW X rpm]	13,070 X 102	13,750 X 105		
Service speed [knots]	19.4	19.8	+0.4knots	
DFOC at 19.8 knots [Ton /day]	41.9	38.6	-7.9%	

• FUEL EFFICIENCY IMPROVEMENT


HULL OPTIMALZATION

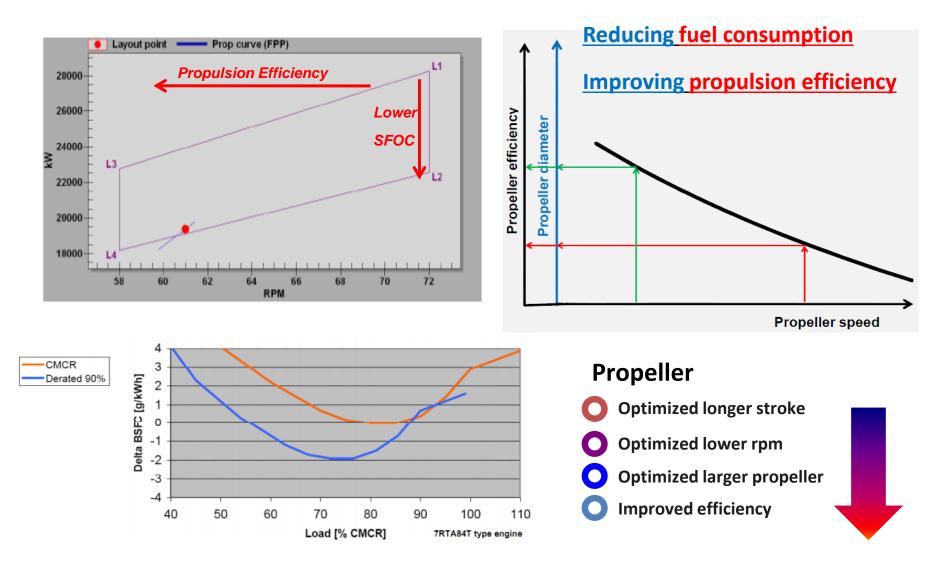
> HULL FORM DESIGN



Bulbous Bow design for slow speed

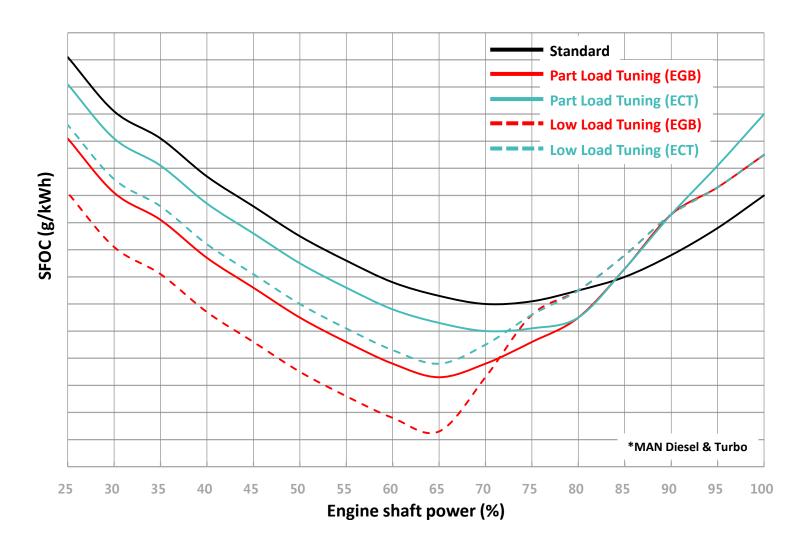
Stern shape change for

- improved propulsion efficiency
- reduced resistance
- larger propeller diameter

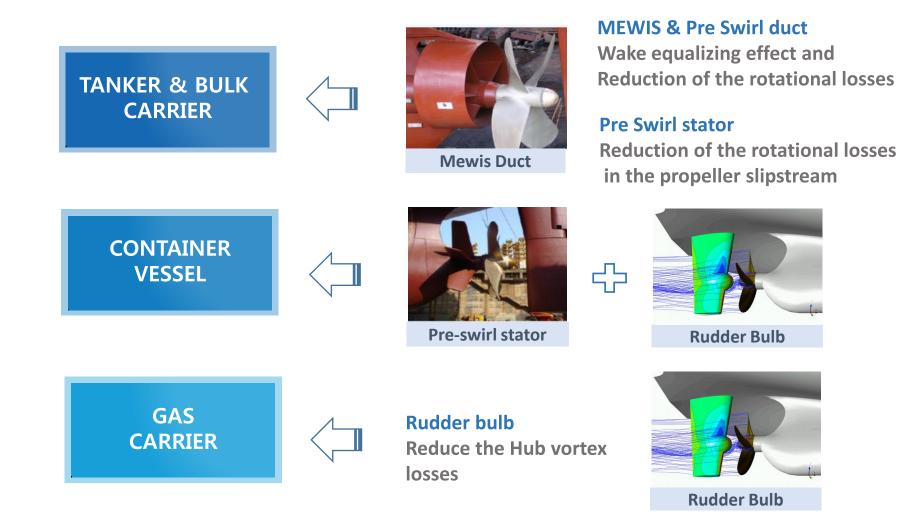


Opimization for multi point (speed, draft, trim)

ENGINE & PROPELLER IMPROVEMENT

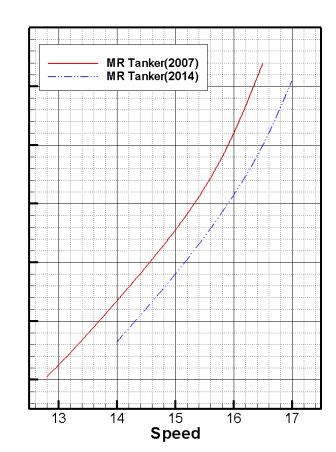

MAIN ENGINE OPTIMIZATION (DERATING)

ENGINE & PROPELLER IMPROVEMENT


LOW-LOAD & PART-LOAD TUNING

ENERGY SAVING DEVICE

OPTIMAL ENERGY SAVING DEVICE


KR CONFIDENTIAL

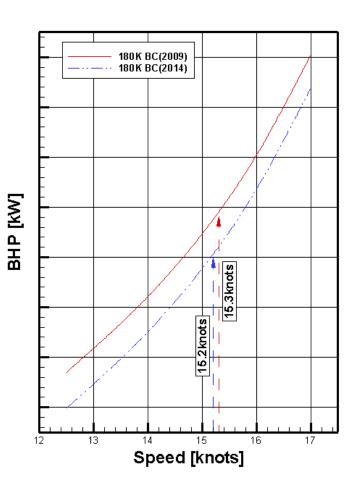
MR TANKER

\bigcirc In Comparison with 2007 designed MR Tanker

Measures for improvement			
Hull Form	Bow, stern hull form development Reduced Cb		
Speed	10% slow steaming		
Main Engine	Adopted Gtype Engine De-rating		
Propeller	17% Diameter increase NPT Propeller		
ESD	Mewis Duct, PBCF		

Improvement		
Power	14%	
DFOC	19%	

Power [kW]


BULK CARRIER

KR CONFIDENTIAL

\bigcirc In Comparison with 2009 designed 180K DWT Bulk Carrier

Measures for improvement		
Hull Form	Hull form development	
Speed	6% slow steaming	
Main Engine	Adopted Gtype Engine De-rating	
Propeller	10% Diameter increase	
ESD	Mewis duct	

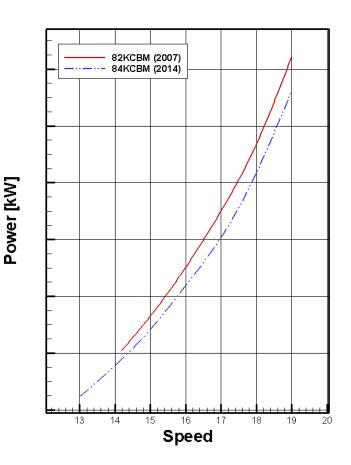
Improvement		
Power	10%	
DFOC	14% (15.2knots based)	

ONTAINER VESSEL

\bigcirc In Comparison with 2008 designed 9000TEU

Measures for improvement		
Hull Form	Hull form development	
Speed	19% slow steaming	
Main Engine	Adopted X type Engine De-rating, Tuning	
Propeller	9% Diameter increase	
ESD	Twist Rudder& Rudder bulb	

Improvement		
Power	19%	
DFOC	22% (22.0knots based)	

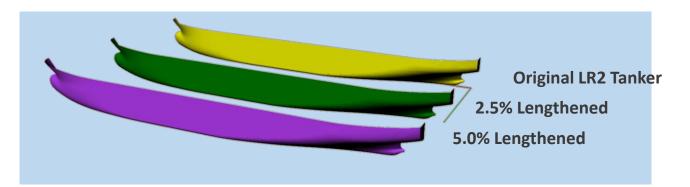

D LPG CARRIER

KR CONFIDENTIAL

\bigcirc In Comparison with 2007 designed 84K CBM LPG Carrier

Measures for improvement		
Hull Form	Hull form development - leadge bow	
Speed	-	
Main Engine	Adopted Gtype Engine De-rating	
Propeller	6% Diameter increase	
ESD	Rudder bulb	

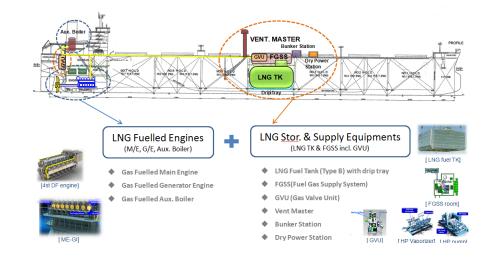
Improvement		
Power	8%	
DFOC	12%	

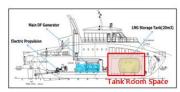


MAIN DIMENSION OPTIMIZATION

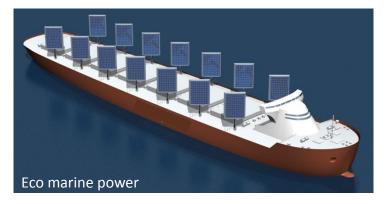
KR CONFIDENTIAL

○ Comparison of Hull form for Original LR2 Tanker and Lengthened


	Resistance [%] at Ts, 14.5knots	Annual FO cost [%]	EEDI
Original LR2	100.0	100.0	Phase II
2.5% Lengthened	97.1	94.2	Phase III
5.0% Lengthened	94.4	88.2	Phase III


ALTERNATIVE ENERGY

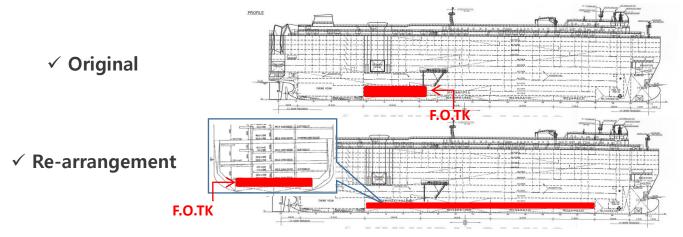
○ LNG – Ready ship, Fueled ship



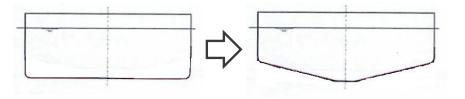
Tank Room (Cold Box)

Inner Shell Outer Shell

○ Wind and Solar power ship



KR CONFIDENTIAL


MINIMUM BALLAST

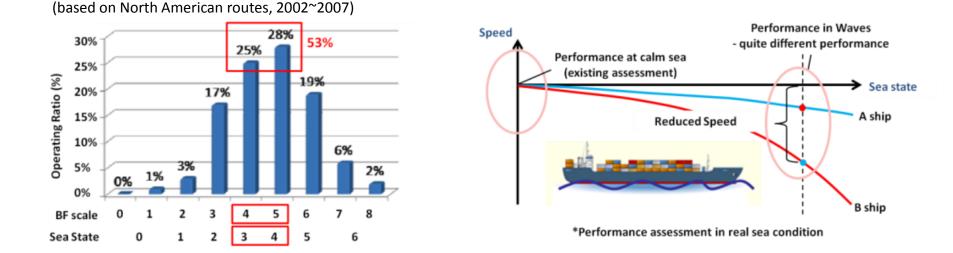
○ Fuel oil re-arrangement(PCTC) – reduced ballast water for stability & trim

○ Optimum Ballast tank arrangement

O Innovative hull design (VLCC) Source: Namura Shipbuilding Co.,Ltd

- ✓ Length & beam : No change
- ✓ Depth & Draft : +1m
- ✓ Ballast water weight : abt. 30,000MT (65% reduced)

$\overline{\mathbf{D}}$

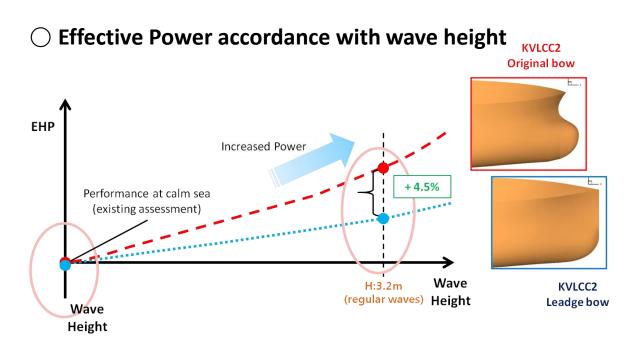

IMPROVING SHIP PERFORMANCE IN WAVES

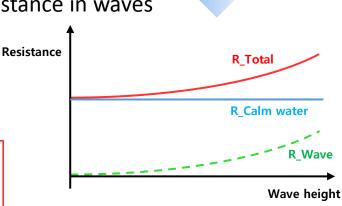
\bigcirc Vessels are traditionally optimized and designed for

- a single condition (normally the contract speed at design draft) on calm water condition
- but, actual operating conditions are quite different from design point.

\bigcirc Difference of ship performance between at calm sea and in waves

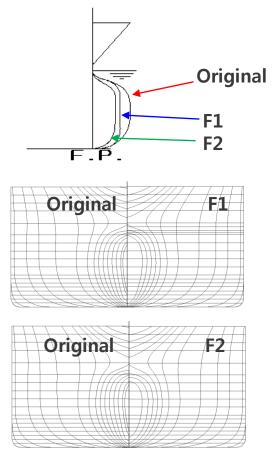
- Ship having same performance at calm sea have different performance at weather condition.

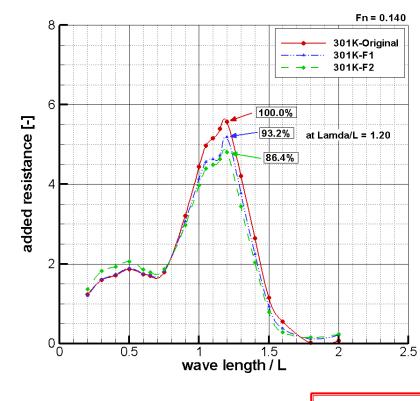



> IMPROVING SHIP PERFORMANCE IN WAVES

O Development of Program(WISH) for prediction of Added resistance in waves

- JIP for Ship hydro-elasticity and Green-ship Technology (2013~2015)
- O Development of prediction technology for Added resistance in waves

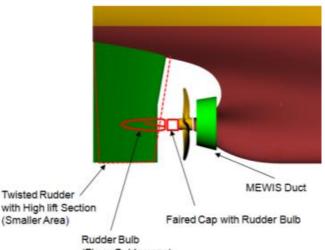




> IMPROVING SHIP PERFORMANCE IN WAVES

O Development hull form design for reduced Added resistance in waves (on going project)

- with a shipping company



ESD EFFECTIVE AS CLAIMED?

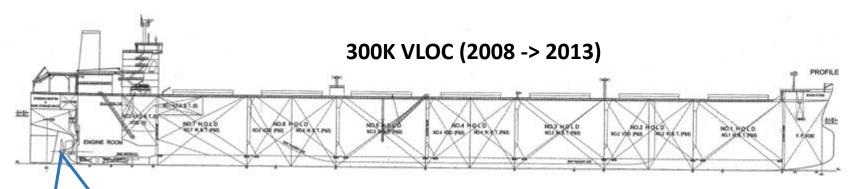
- Optimized and designed for a single condition ٠
 - normally contract speed at design draft
- Guaranteed for model test not for sea trial
- Combination effects of ESDs?

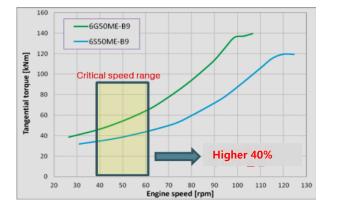
(Fin or Guide vane)

EEDI and Fuel Efficiency different ٠ in certain cases

	300К С.О.ТК (А)	300К С.О.ТК (В)
Main Engine	MAN 7G80ME-C9.2	MAN 7G80ME-C9.2
MCR (kW x rpm)	24,020 x 65	26,460 x 66
Speed at Td (knots)	14.8	14.8
DFOC at NCR (mt/day)	66.68	63.5
EEDI(ATT./REQ.)	-20.5%(2.06/2.59)	-16.6%(2.16/2.59)

- More ballast water required
 - Due to larger propeller
 - For propeller immersion




Image Credits: schneekluth.com

- Principal dimension & arrangement unchanged (ballast draft +0.6m)
- Adopted G-type engine and Larger propeller (9.7m -> 10.3m)
- Due to additional ballast water, fuel efficiency decreased by 4 %

DISADVANTAGE FROM IMPROVEMENT?

- Torsional vibration problem due to higher excitation torque
 - Longer stroke
 - Higher excitation torque
 - Peak value of torsional vibration to be reduced by torsional vibration damper

FT / Tau2 bit viscous damper (barred speed range required) with viscous damper (barred speed range) FC / Tau1 Engine speed

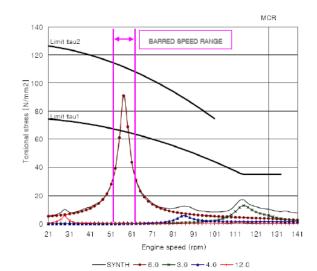
[Excitation Torque]

[Vibration control with torsional vibration damper]

DISADVANTAGE FROM IMPROVEMENT?

• Delayed rpm acceleration

Caused by


- excessive de-rating power
- larger propeller diameter

Leading to

- longer time to pass barred rpm range
- longer time to reach MCR

Associated problem includes

- shaft fatigue failure (torsional vibration induced)
- Maneuvering difficulty

- Fuel saving technology currently being applied was reviewed
- Fuel efficiency improvement from each ship type was reviewed
- Further effort will be given for fuel efficiency improvement, some of which may involve new build cost increase.
- There are some disadvantage from fuel efficiency improvement. The disadvantage are being addressed by maker and shipyard.

Thank you!

Technology Development Team

Tel: +82-(0)70-8799-8270 E-mail: Technology@krs.co.kr

